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SUMMARY

Due to its elasticity, the human brain material can support shear (equivoluminal) waves. Earlier attempts
to explain certain brain injuries via arguments of the classical theory of viscoelasticity exploited the
Voigt model—a linear system of di�erential equations where the motion of the brain tissue depends
merely on the balance between viscous and elastic forces. Although Voigt model solutions illustrate the
role of the viscoelastic mechanics in brain injuries, they have limited use for modelling realistic cases
which, for example, evince strongly localized displacements of the brain tissue. We have extended the
Voigt model to a non-linear viscoelastic �uid model, thereby dispensing with simplifying assumptions
of vanishing advective transport. The resulting non-Newtonian �uid model admits non-linear phenom-
ena such as steepening of the wave fronts as well as wave overturning and their subsequent turbulent
breaking. The posed equations are solved numerically, and the solution procedure are validated against
small-perturbation linear theory and closed-form Voigt-model solutions available in the literature. Our
non-linear numerical results suggest existence of a ‘brain turbulence’ phenomenon. They are in qualita-
tive agreement with the results of medical research, especially, with regard to the di�use axonal injuries
which are observed to occur in a highly localized manner near the border between the gray and the
white matter. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In 1944, Holbourn [1] pioneered biomechanical modelling of brain-tissue traumas by employ-
ing the arguments of elasticity theory. In the 1960–1970s, more general viscoelastic models
for brain injuries were developed [2–5]. One aim was to describe the strain �eld generated
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within the brain during trauma, assuming strain’s dependence on the geometry and physical
characteristics of the skull–brain system. In particular, Ljung [5] used a linear viscoelastic
Voigt model [6] to estimate deformations of homogeneous brain tissue triggered by an impul-
sive onset of skull rotation.† He solved analytically the Voigt equations for three idealizations
of skull geometry: in�nite circular cylinder, circular cylinder closed at one end, and sphere.
Ljung’s mathematical results—combined with the measurements of brain-tissue viscosity

and shear module [5; 7]—demonstrated that brain tissue can support the propagation of equiv-
oluminal shear waves for tens to hundreds of milliseconds, the time over which traumatic brain
damage is observed to occur in experiments. Furthermore, for realistic values of angular ve-
locity !0≈ 10rad=s (i.e. the tangential velocity of the rotating skull v0≈ 1m=s), Ljung’s results
predicted that the strain in the brain-tissue may become su�ciently large to cause stretching
of blood vessels or neurons by 50%. Since experiments in vitro showed that veins can sustain
only a strain of ca. 0.5 without rupturing [8; 9], and axons begin to experience ion imbalances
under 0.1–0.15 strain [10], the Voigt equations have been used to model two main types of
brain injuries: hematomas and di�use axonal injuries (DAI). In fact, a criterion proposed for
DAI [11] is based on the Voigt equations.
Ljung’s solutions, as well as our own numerical results [12–14],‡ show that for realistic

initial conditions, strains of 0.5 and greater are obtained within tens of milliseconds over
extended regions of the brain. This does not match medical data which document that the
rupturing of veins and DAI (caused by the head’s rotation) usually appear in localized regions
of the brain. For instance, microscopic studies of DAI [15; 16] provide strong evidence of
pointwise damage to neurons (i.e. some are a�ected while their neighbors seem to be healthy)
scattered throughout larger regions. On the other hand, some medical research indicates that
much larger strain might be required in order to damage the brain tissue. For example, the
geometry of bridging veins [17] implies that, in vivo, the strain in the brain tissue must exceed
0.5 to cause rupturing of veins during forward head rotation (typical for accidents). Also, the
latest research indicates that a level of strain as high as 0.85 with a duration of 0:05 s may
leave neuron membranes intact [18].
This apparent inconsistency of the theoretical predictions with data by no means de�es

the utility of biomechanical modelling, but it shows a need for appropriate extensions of the
existing models. In this paper, we propose a �nite-amplitude extension of the Voigt model.
We show that the extended equations yield, in particular, solutions characterized by highly
localized strains of large-amplitude (1–10 and larger).

2. NON-LINEAR VISCOELASTIC MODEL

Brain tissue is about 83% water by weight. In e�ect, it is an incompressible medium with
bulk module K =2× 106 kPa and density �=1:06× 103 kg=m3. The measured values for kine-
matic viscosity � of a mixture of human white and gray brain matter has been found to range
from 0:009 to 0:017m2=s, whereas the shear module G of such a mixture indicates the phase

†Physical characteristics of the head=brain system make the brain more prone to injury due to rotations than
to translations.

‡We have extended the classical solutions on in�nite cylinders with elliptic cross-sections.
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velocity of shear waves c :=
√
G=�≈ 1–3:5 m=s [7; 5; 19]. These phase velocities are com-

parable with the material velocities of the brain tissue occurring in accidents. When mate-
rial velocities become comparable to phase velocities of the waves supported by a medium,
one may anticipate �nite-amplitude phenomena, such as steepening of the wave fronts, wave
overturning, and their subsequent turbulent breaking as is familiar, e.g. from the non-linear
dynamics of strati�ed and=or rotating incompressible �uids. Furthermore, medical research
shows that DAI frequently appear near borders separating brain structures of distinct physical
characteristics, i.e. the white versus the gray matter [15] or the white matter versus the cere-
bral �uid in ventricles [16]—henceforth, properties of the white and the gray matter will be
denoted with symbols ‘w’ and ‘g’, respectively. More recent measurements [20; 21] provide
the shear modulus for human white matter Gw≈ 1 kPa and a 4–14 times larger value Gg
for the gray matter, i.e. cw≈ 0:9–1 m=s and cg≈ 1:8–3:8 m=s.§ Again in analogy to strati�ed
�uids, one may anticipate a plethora of wave phenomena (re�ection, interference, scattering,
etc.) with large amplitude at the medium discontinuity.
In order to test the hypothesis that localized scattered brain injuries can be explained with

the help of �uid mechanics, we have extended the Voigt model to a non-linear viscoelastic
�uid, thereby dispensing with simplifying assumptions of vanishing advective transport and
in�nitesimal elastic displacements. The proposed non-Newtonian �uid model can be viewed as
a standard Navier–Stokes model with additional forcing dependent on the Lagrangian integrals
of the �ow velocity—viz. memory terms. Precisely, we use the following PDEs to describe
the motion of incompressible brain material:

Dv
Dt
=−∇�+∇ · �̂; Du

Dt
= v; ∇ · v=0 (1)

where D=Dt := @=@t+ v · ∇ is the material derivative with v(x; t) denoting the velocity vector,
�(x; t) is a scalar potential composed of the pressure and an arbitrary portion of the trace of
the stress tensor (hereafter, ‘pressure’ for brevity), and u :=x(x0; t)− x0 denotes Lagrangian
displacement of a �uid parcel labeled by its initial position x0; all variables are normalized
appropriately. The postulated deviatoric stress tensor �̂ is de�ned by augmenting the stress
tensor for isotropic viscous �uids, proportional to the rate-of-deformation tensor, with the
classical stress tensor for elastic solids (based upon the Hooke–Cauchy law) proportional to
the in�nitesimal strain tensor (see Chapter 1 in Reference [22]):

�̂= �(∇v+∇vT) + c2(∇u+∇uT) (2)

Here, � is the viscosity coe�cient, c is the phase speed of shear waves, and superscript T
denotes transpose. The term proportional to ∇ · u—viz. hydrostatic compression (Chapter I in
Reference [23])—required for the objectivity of the stress tensor (cf. Chapter 2 in Reference
[24]) is included in �.¶ In an orthonormal basis of the Euclidian space, and for constant �

§The newest measurements suggest that Gg and Gw may be much smaller; nonetheless, they con�rm the cg=cw¿1
ratio, [25].

¶Since the mathematical form of (1) is that of an incompressible �uid, in solution procedures � is diagnosed
from an elliptic boundary value problem, which follows the incompressibility constraint, with impermeable rigid
boundaries that imply Neumann boundary conditions on �. In consequence, arbitrary portions of the trace of �̂ can
be manipulated freely into � without e�ecting the solutions for v and u.
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and c, (1; 2) can be simpli�ed to

Dv
Dt
=−∇�̃+ ��(v) + c2�(u); Du

Dt
= v; ∇ · v=0 (3)

where � represents ordinary (scalar) Laplacian operator, and �̃ is the corresponding pressure.
The Voigt equations are a linearized form of (3) where all convective derivatives v · ∇ are
neglected, whereupon ∇�̃≡ 0 given appropriate initial and boundary conditions.
Replacing the partial temporal derivative of the Voigt model with the material derivative to

link v and u is motivated by the tendency of brain tissue to return to its initial form, after the
deforming force is removed. To re�ect this tendency, a �uid parcel should ‘remember’ where
it came from. On the other hand, the use of the material derivative implies that the work of the
elastic part of the stress tensor may depend on the integration path, whereupon the resulting
elastic force is not necessarily conservative. One might attempt a formal regularization of
the postulated model by subtracting=adding appropriate terms on the r.h.s. of the momentum
equation in (1) while modifying the stress tensor (2). However, it is unclear, at present, how to
design a regularization consistent with the physiology of brain tissue. Note that the postulated
non-linear model (1; 2) is still minimalistic, as it keeps assuming isothermal thermodynamics
of the brain tissue and constant-coe�cients stress tensor. The latter assumption cannot be
uniformly valid for all u, as in the limit of a neuron or vein rupture, c2 must vanish—an
extreme manifestation of the non-linearity in Hooke’s law. Therefore, further generalizations of
(1; 2) require laboratory measurements to guide eventual mathematical extensions. Realizing
de�ciencies of the postulated model, we monitor closely the energy of the solutions and
dispense with the results shortly after the total kinetic energy indicates the tendency to exceed
that of the corresponding solid-body rotation.‖

In the appendix, we include the linear analysis of (3) that contains the Voigt model in the
limit of the zero background �ow. The derived dispersion relations together with the brain’s
physical characteristics shed some light on properties of the non-linear solutions.

3. NUMERICAL APPROXIMATIONS

The non-linear system (1) is solved numerically by means of �nite di�erence approximations.
The numerical model employed is an adaptation of the semi-Lagrangian=Eulerian strati�ed
�uid code EULAG (see References [26–28] and the references therein) that solves the non-
hydrostatic anelastic equations of motion in curvilinear ‘body-�tted’ co-ordinates. The latter
feature is particularly useful as it allows us to model various shapes of the skull as well as
some internal structures such as falx cerebri. Below we comment on the essential aspects of
the model design while referring the reader to the earlier works for details.
The posed viscoelastic system (1) can be written in the compact conservation-law form:

@�∗�
@t

+∇ · (v∗�)= �∗F(�) (4)

‖In order to appreciate the magnitude of energetic inconsistencies, consider that the kinetic energy of the solid-body
rotation for the cases discussed in this paper is equivalent to increasing the brain temperature by no more than
merely ∼ 0:2◦C.
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Here, � denotes any of the three Cartesian velocity components (vx; vy; vz), as well as any of
the three Cartesian components of the displacement (ux; uy; uz); �∗ := �G is the tissue density
premultiplied by the Jacobian of the co-ordinate transformation (from the Cartesian to the
lower-boundary following curvilinear framework). The advective velocity v∗ := �∗(vx; vy; �),
with � denoting the ‘vertical’ component of transformed velocity, satis�es the incompressibility
constraint ∇ · v∗=0. The associated F(�) terms on the r.h.s. of (4) symbolize the forcings
on the r.h.s. of prognostic equations in (1).
The integration of the discrete equations over a time-step uses a regular unstaggered mesh.

We write the �nite-di�erence approximations to (4) in the compact form:

�n+1i =Ai(�̃)− 0:5�tFn+1i (5)

where A denotes a �ux-form Eulerian non-oscillatory forward-in-time transport operator [26];
�̃ :=�n + 0:5�tFn; and indices i and n have the usual meaning of the spatial and temporal
location on a (logically) rectangular Cartesian mesh.
Completion of the model time step requires provision of Fn+1 values of forcings in (5).

Pressure gradient forces in the momentum equations and the velocity forcing in the displace-
ment equations, both are treated implicitly; whereas viscoelastic forcings in the momentum
equations are treated explicitly, i.e. the relevant part of Fn+1 is prognosed from earlier val-
ues of the dependent variables.∗∗ The implicitness of the pressure gradient forces is essential
as it enables projecting the preliminary values Ai(�̃), onto solenoidal �ows. Here, it re-
duces to formulating the boundary value problem for pressure implied by the transformed (to
the curvilinear framework) continuity constraint ∇ · v∗=0. The resulting elliptic equation is
solved (subject to appropriate boundary conditions) using the generalized conjugate-residual
approach, see Reference [27] and the references therein. The numerical model was validated
using Ljung’s [5] exact solution for a rotating circular cylinder and our numerical results
obtained independently for the case of a rotating elliptic cylinder [12–14].

4. RESULTS

If an in�nite (viz. 2D) circular cylinder is set impulsively in a rotating motion with a constant
tangential velocity v0, the tangential component of displacement u�(�; t) is the only non-zero
solution of the Voigt equations. In polar co-ordinates, 06�6R, 06�¡2�, it has the form [5]

u�= v0

[
�t
R
+ 2

∑
i

J1(�zi=R)
ziJ0(zi)

(
z2i c

2

R2
− z4i �

4

4R4

)−1=2
exp
(
− z

2
i �
2R2

t
)
sin

(√
z2i c

2

R2
− z4i �

4

4R4
t

)]
(6)

where R denotes the radius of the cylinder, J0(z), J1(z) are Bessel functions of the �rst kind,
and the zi’s are the zeros of J1(z). Solution (6) can be illustrated with a rotating bicycle
wheel whose spokes are elastic. Initially, the spokes are strained in unison at the onset of the
rotation, then their maximal displacement propagates toward the centre, forming a wave. Since
the amplitude of the wave is damped by, e.g. the air resistance, the spokes keep bouncing back

∗∗Optionally, system (5) is iterated with the viscoelastic forcings lagged behind, thereby resulting in the trapezoidal
integral for all forcings, in the limit.
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and forth until reaching static equilibrium with u�= v0�t=R. Assuming in (6) �=0:01 m2=s,
R=0:1m, c=0:9m=s, and v0 = 1:35m=s, the supremum of |D(�; t)| := |u�(�; t)−v0�t=R| attains
nearly 0:03 m at �≈ 0:4 R and t≈ 0:04 s; but for long intervals, t¿0:25 s, |D|60:005 m. The
largest value of sup |@D=@�| ≈ 1 is attained near the skull already at t≈ 0:025 s; however for
t¿0:25 s, |@D=@�|60:3. This time span is in quantitative agreement with the results of labo-
ratory experiments simulating accidents. Ljung’s analytic solution (6) provides the reference
frame for non-linear studies, and it serves as a discriminating validation tool for the numerical
algorithms employed.
We investigated the non-linear responses to the e�ect of: (1) the asymmetry of the skull;

(2) the �ow velocity comparable to the phase velocity of the shear waves; and (3) the
medium consisting of two layers simulating the di�erences between gray and white matter.
The numerical results reported in this paper assume 2D idealization tantamount to an in�nite
elliptic cylinder—mimicked with suitable distribution of v0—with b=2a=R=0:1 m or a
circular cylinder with b= a=R. The forced rotation (of the cylinder) is characterized by the
tangential velocity v0 at the ‘larger’ radius R, and the duration T . The results reported were
obtained using 0:001m grid resolution in both directions and �t=0:001 s for ‘turbulent’ �ow
cases (but a twice larger �t otherwise).
To assess (and visualize) the magnitude of an eventual injury at a given time t, we

graph in elliptic co-ordinates r := (�; �)†† the operator norm N of the displacement’s Jacoby
matrix @u=@r relative to its solid-body-rotation value, i.e. N := ‖@u=@r − (v0T=R)I‖, where
T:=min(t; T ), R :=

√
a2 cos2 �+ b2 sin �, and I denotes the identity matrix. The analysis of

the energy conservation in numerical simulations shows that for realistic values of the model
parameters, no energy is produced, and the results remain trustworthy, overall, for a few
hundreds of milliseconds. Thus, the model errors are reasonably small for the interval within
which brain injuries occur in accidents. Assuming either smaller v0 or larger � prolongs the
validity of numerical results.
For the continuously rotated circular cylinder, the non-linear results closely match the lam-

inar, one-component solution of Ljung (6). In the case of the elliptic cylinder, however, the
radial component u� �=0 and, consequently, N does not converge to zero in the equilibrium.
In other words, spokes of the continuously rotated elliptic wheel (in our heuristic example)
do not return to their initial positions.‡‡ Furthermore, in this non-linear case, the solutions
become sensitive to v0 (for a �xed c and �) suggesting �ow criticality.
In single-layer test cases with v0¡c, the �ow is hydrodynamically stable (over the duration

of the experiment, �xed at 0:5 s for all simulations) with supN≈ 2 in the equilibrium. How-
ever, if v0 = c=0:9 m=s, the value of N≈ 2 is attained near the skull already at t≈ 0:16 s;
whereas for t¿0:4 s the �ow becomes unstable,§§ with supN≈ 5 at t=0:5 s. Further, if
v0 = 2:7m=s and c=0:9m=s, the �ow becomes unstable for t¿0:2 s with rapidly growing N;
see Plate 1 (left panel).
Results of a series of the two-layer experiments with di�erent c in each layer (gray mat-

ter corresponds to the outer layer) are far more dramatic. For instance, if cg = 1:8 m=s and
cw =0:9m=s, a rotation with v0 = 1:35m=s lasting only for T =0:05s, leads quickly to a rising

††x := 1
2� cos �, y := � sin �, 06�6R, 06�¡2�.‡‡This behaviour is related to the cylinder’s ellipticity, as it occurs in the linear cases as well.

§§The instability originates in a region located near the short axis of the elliptic cross-section.
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‘wall’ of extremely high values of N at the border between the two layers. For t¿0:1 s,
the maximal values of N¿30 become highly localized at the border—with the six largest
‘singularities’ located approximately every �=3 rad, see Plate 1 (right panel). The turbulent
�ow spreads slowly, mainly into the white matter [14]. The maximal values of N are smaller
when 1¡cg=cw¡2 is assumed, but the overall picture remains the same. Consequently, our
conclusions regarding the importance of non-linear e�ects hold also for the newest data that
indicate cg=cw≈ 1:2, at the border between the gray and the white matter [25]. Interchanging
the values of wave velocities in both layers—i.e. considering an abstract, unrealistic case—
leads to a laminar solution in a form of a wall, with supN attained at the border. In particular,
for v0 = 1:35m=s with cw =1:8m=s and cg = 0:9m=s, supN≈ 9 is attained at t≈ 0:113 s. This
wall recedes slowly, in a pulsating manner, as the waves bounce back and forth between the
skull and the border [14]. The last result is representative of a series of the two-layer solu-
tions obtained with various con�gurations of wave velocities cg �= cw and rotation times T , for
non-linear circular cases as well as for linear elliptic and circular cases (Voigt equations). In
essence, all these solutions di�er only in the height of the wall and the wave damping rate.

5. DISCUSSION

Our numerical results suggest the existence of a ‘brain turbulence’ phenomenon. They appear
to be in agreement with the results of medical research, especially, with regard to the Di�use
Axonal Injuries which are observed in vitro to occur in a highly localized manner near the
border between the gray and the white matter [15]. In fact, our results seem to explain why
these injuries appear along the border. Indeed, even if the skull rotation (during an accident)
induces material velocities in the gray matter smaller than cg, the propagation of material
motion into the white matter can lead to material velocities there that are larger than cw.
Consequently, the non-linear wave steepening and breaking occur at the border resulting in a
highly localized (patchy) turbulent �ow with large-amplitude strains and velocities. A similar
explanation may be valid for DAI occurrences at the border between the white matter and the
cerebral �uid [16] due to, e.g. wave re�ections from the non-elastic layer of the �uid. Also, a
highly localized accumulation of energy may occur due to the transfer of energy through the
cerebral �uid into the white matter (analogous to the energy transfer between various layers
during earthquakes). The results reported are encouraging. They indicate that non-linear �uid
dynamics can play an essential role in modelling brain injuries. Nonetheless, the postulated
non-linear model (1; 2) is minimalistic, and much development is still required. For instance,
while generalizing the Voigt equations, we have treated the model energetics with some laxity.
This as well as 2D slab-symmetry and lack of realism in representing the geometry of the
skull, warrant further studies regarding both the analytic and numerical formulation of our
model.
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APPENDIX

By substituting a single Fourier-mode solution into the linearized system (3), we derive
the dispersion relationship between the wave vector k and the intrinsic complex angular
wave frequency != 1

2(i�‖k‖2±
√
4c2‖k‖2 − �2‖k‖4). The latter implies that waves can propa-

gate only if ‖k‖¡2c=� := k0. Their intrinsic phase velocity vp :=Re!=‖k‖ and group velocity
vg := d(Re!)=d‖k‖ are, respectively

√
c2 − �2‖k‖2=2 and (4c2 − 2�2‖k‖2)(4c2 − �2‖k‖2)−1=2.

Propagating waves are damped exponentially in time with the inverse time scale of damp-
ing �(‖k‖) := 1

2�‖k‖2¡�(k0)=2c2=�. If ‖k‖¿k0, the linearized system supports only evanes-
cent waves which can be damped at two distinct inverse time-scales: �±(‖k‖) := 1

2(�‖k‖2 ±√
�2‖k‖4 − 4c2‖k‖2). When ‖k‖→∞, �+(‖k‖)→∞ whereas �−(‖k‖)→ 1

2�(k0). Thus, (1)
waves shorter than 	0 := 2�=k0 =��=c should not propagate in brain tissue (unless they �ow
with the medium), and vp↘ 0 when 	↘ 	0; (2) the velocity vg↘ 0 when 	↘√

2	0, and next
vg↘−∞ when 	↘ 	0; and (3) short evanescent waves are damped ‘twice slower’ than the
shortest propagating waves. Altogether, this suggests that short waves may play an impor-
tant role in the creation of turbulent �ows we have modeled, and consequently in explaining
the mechanisms of certain brain traumas. Physical data imply that 0:028 m6	w060:06 m and
0:007 m6	g060:03 m.
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